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Latent concepts are ubiquitous in political science. The study of political systems, poli-

cies, and belief systems requires careful theorizing and exploration of concepts that are not

directly measurable. In particular, constructs such as level of democracy, extent of human

rights, and ideology are all latent qualities that we cannot observe directly. Nonetheless,

social scientists have theoretical reasons to work with measures of such latent constructs and

core questions in our disciplines are virtually impossible to tackle if we restrict the objects

of our analyses to concrete observables. Therefore, we often rely on the subjective judgment

of experts to provide measures of latent traits.

Of course, there are many ways to leverage expert knowledge for concept measurement.

One approach places substantial faith in a small number of experts. For instance, one might

use one specialist, or a small panel of judges, who jointly code the set of observations, say

polities (Marshall & Gurr 2011). This strategy assumes that a small group of experts have

access to the knowledge and information necessary to adequately measure latent traits across

the population of interest. Not surprisingly, this assumption may be difficult to meet in cross-

national studies where detailed local knowledge is necessary to adequately assess concepts.
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Thus, in cross-national research, it is common to distribute the load over a large number

of experts, and ask each specialist to code a single unit, say a party’s election manifesto

(Klingemann, Volkens, Bara, Budge & McDonald 2006). Ideally, this strategy draws from

a cross-national pool of experts that can leverage local knowledge to produce detailed and

valid measures.

This measurement strategy relaxes the assumption that a small group of experts can

evaluate many units, but has the potential to generate differential assessments across units

because it implicitly assumes that experts’ understandings of concepts are identical. In

other words, these approaches simply assume that each coder is able to produce a valid

point-estimate of the latent concept at hand.1 Multiple raters may have quite different un-

derstandings of latent concepts and this variation in conceptualization may be especially

exacerbated when experts hail from varying cultural and educational traditions. Indeed, in

the context of party manifestos, Konig, Marbach & Osnabrugge (2013) show that expert

ratings exhibit substantial cross-national bias. More generally, people with varying back-

grounds are likely to apply different standards when rating concepts (King & Wand 2006).

For example, consider the task of rating the extent of media freedom in a country, using a

Likert scale running from zero (no freedom) to five (complete freedom). If experts in coun-

try A—perhaps because of a long history of freedom of expression—hold media freedom to

higher standards than those in country B, then country A expert thresholds will be higher

than those of their counterparts. Even within countries, experts’ standards may differ. And,

varying standards aside, research shows that people’s responses to Likert scales vary system-

atically across cultures (Lee, Jones, Mineyama & Zhang 2002). Thus, measurement efforts

that rely on cross-national teams of experts need to take the possibility of varying standards

seriously.

Both of the aforementioned strategies place substantial faith in each individual expert,

and—because they generate only one estimate per observation—provide little leverage over

1Klingemann et al. (2006) are a somewhat inappropriate example here, because they attempt to train
their raters to maximize inter-coder reliability.
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potential measurement uncertainty. In essence, therefore, they assume that the expert rat-

ings that they rely upon are error-free, or at least highly reliable.2 Expert surveys, where

more than one expert provides a rating of each observation, allow researchers to relax this reli-

ability assumption and, at least potentially, produce estimates of measurement error (Bakker,

de Vries, Edwards, Hooghe, Jolly, Marks, Polk, Rovny, Steenbergen & Vachudova forthcom-

ing, Fish & Kroenig 2009, Kitschelt 2013). With these approaches, however, aggregating

coders’ opinions becomes an issue. In most cases these studies focus on measures of cen-

tral tendency, and ignore precision, or, at best, provide simple summaries of variation in

expert codes. Moreover, this approach does little to alleviate concerns about cross-expert

equivalency; there is no way of knowing whether experts have the same scale in mind when

they provide their codings. For example, we do not know if a Hungarian specialist defines

extreme-right political parties in the same way that a Swedish expert might. While expert

surveys typically use carefully worded questions that are designed to minimize conceptual

slipping, there remains a substantial risk that experts in different contexts might interpret

coding rules in systematically different ways.

A more sophisticated approach to aggregating expert ratings explicitly models the mea-

surement process, typically using item response theory (IRT) methods developed by scholars

of educational testing (see e.g. Clinton & Lapinski 2006, Clinton & Lewis 2007, Treier &

Jackman 2008, Pemstein, Meserve & Melton 2010, Linzer & Staton 2012, Konig, Marbach

& Osnabrugge 2013, Schnakenberg & Fariss 2014, Fariss 2014). These models relax two

key assumptions implicitly made by traditional approaches to aggregating ratings in expert

surveys. First, they allow for variation in rater precision. Second, they allow raters to adopt

differing standards of conceptualization. In particular, when raters provide ordinal (Likert

scale) ratings of a particular concept, these methods allow for the possibility that different

experts have varying thresholds for placing observations into particular categories within the

scale. Finally, because IRT methods are grounded in an explicit model of the rating pro-

2Although many of these projects do attempt to verify the inter-coder reliability of their experts or coding
teams.
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cess, they both aggregate information provided by multiple experts and produce reasoned

estimates of uncertainty around aggregate point estimates.

However, these tools are not immune to the problems that plague other strategies for

measuring latent social science concepts cross-nationally. In particular, while these methods

can, in principle, deal with variation in how experts perceive latent traits, common patterns

of data collection in comparative politics—in particular, using disjoint sets of coders across

countries—make it difficult for researchers to use IRT models to produce cross-nationally

comparable measures of latent concepts. Thus, a persistent problem in the use of these

methods has been the issue of calibration/comparability, or lack of bridging. Since in many

cases the same latent concept is being measured for different units and/or in different times, it

is vital to identify bridges who cross disjoint sets of coders and provide information necessary

to calibrate coder thresholds across units. In our context, these are experts who are capable

of rating more than one country. This problem is analogous to that faced by researchers

who use IRT methods to estimate ideology from roll call votes and who wish to create

common space measures across institutions (McCarty & Poole 1995, Bailey 2007, Shor &

McCarty 2011) or within institutions across time (Poole & Rosenthal 1997, Groseclose, Levitt

& Snyder 1999, Martin & Quinn 2002). Thus, the bridging problem is important both to

comparative social scientists that rely on expert surveys and to political scientists who are

interested in measuring politicians’ and voters’ preferences on consistent scales across time

and institutional space. Yet, we have little understanding of exactly how much bridging is

necessary to achieve scale equivalency across units, and recent work has called into question

the extent to which existing common spaces actually achieve scale identification (see e.g. Ho

& Quinn 2011).

In this paper we provide a systematic analysis of the issue of bridging, motivated by the

Varieties of Democracy (V-dem) project. This project is, at its core, an expert-survey, in

which country experts provide ordinal ratings about dozens of democratic indicators (e.g.

barriers to parties, freedom of academic speech, civil society participation), for the 1900-
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2012 period. The unit of analysis for each indicator is country-year, for which at least five

coders provide ratings. A major selling point of the project is its reliance on a mix of local

experts and foreign specialists; generally about half of the raters reside in the country that

they rate. But this focus on specialized knowledge comes at a cost; initial survey waves

almost exclusively asked experts to provide ratings for only a single country and the length

of the survey made both the creation and use of anchoring vignettes (King & Wand 2006)

impractical. Subsequent waves have focused on ‘bridge-coding,’ but the search for bridge

coders faces a number of practical limitations. First, the specificity of the survey3 means

that few potential raters have the ability to provide cross-national coding, especially for the

whole time period under consideration. Resources are also an important constraining factor

because recruiting bridge-coders and administering surveys is expensive. Thus the V-Dem

project faces a problem that is—or should be—generally applicable to a large class of cross-

national expert surveys: it needs to recruit bridge coders as efficiently as possible and to

evaluate when bridge coding is sufficient to provide cross-nationally comparable estimates of

latent traits.

Thus, we seek to answer a set of key questions. First, if we adopt weak prior assumptions

about the structure of rater thresholds,4 how much bridging is necessary to achieve cross-

national comparability in a survey structured like V-Dem? Perhaps more importantly, how

do we know when we have enough bridges? Or, failing that, can we at least develop tools to

systematically identify cases for which scale comparability is likely to be a problem? Finally,

how can we most efficiently select bridges in order to obtain scale comparability across

countries? Or, in other words, what set of bridges are likely to provide such comparability

at the lowest cost to the project?

3Technically, surveys. V-Dem experts are partitioned into over ten specializations and each set of experts
completes a survey specific to her area of expertize.

4Weak priors allow raters to have widely varying thresholds. Very strong priors would assume, as most
projects involving cross-national expert surveys essentially do, that thresholds are identical across raters.
Middle-ground assumptions might maintain that same-country experts have identical, or very similar, thresh-
olds, or that raters with similar backgrounds—education, profession, and so forth—have similar thresholds
to one another.
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In the next section we describe the IRT model at the heart of this project. Next, we

illustrate the bridging problem in V-Dem and then use simulations to explore how much

bridging one needs to achieve scale identification when faced with two types of problems

that seem common in V-Dem, and probably plague many cross-national expert surveys of

social science concepts. Finally, we develop and evaluate a pair of search algorithms designed

to select bridges that are most likely to provide information, and thus allow one to correct

scale incompatibility problems.

1 An O-IRT Model for V-Dem Data

We need to introduce some notation to keep track of things because the complexity of the

V-Dem dataset, which contains ratings of a vast number of indicators across space and time.

Moreover, each indicator is rated by more than one judge. This means that there are

• i ∈ I indicator variables,

• r ∈ R raters,

• c ∈ C countries,

• and t ∈ T = {1, . . . , t} time periods.

I is the set of indicator variables while i represents one element from that set, and so

on. Each of the |R| raters provides ratings of one or more of each of the |I| indicators

in some subset of the available n = |C| × |T | country-years covered by the dataset. Each

country enters the dataset at time tc and exits at time tc + 1. We’ll call rater r’s set of

observed ratings/judgments Jr. Each element of each of these judgment sets is an i, c, t

triple. Similarly, the set of raters that rated country-year c, t is Rct. In this paper we focus

on models for a single indicator, and therefore drop the i indices from our notation. We also

restrict our attention to the case where indicator i is ordinal.
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For a given indicator we observe a sparse5 |C| × |T | × |R| array, y, of ordinal ratings.

While our observations are ordinal, we assume that raters make judgments about latent

continuous concepts. In particular, we assume that each rater first perceives latent values

with error, such that

ỹctr = zct + ectr (1)

where zct is the “true” latent value of the given indicator in country c at time t, ỹctr is

rater r’s perception of zct, and ectr is the error in rater r’s perception for the country-year

observation. For the cases that she judges (Jr), rater r places a country-year in category k

if τr,k−1 < ỹctr ≤ τr,k, where each τ represents a rater cutoff point on the underlying latent

scale. The vector τ r = (τr,1, . . . , τr,K−1) is the vector of unobserved ranking cutoffs for judge

r on the latent scale. We fix each τr,0 = −∞ and τr,K = ∞, where K is the number of

ordinal categories raters use to judge the indicator. For the moment, say the cumulative

distribution function for the rating errors is

ectr ∼ F (ectr/σr). (2)

Combining this assumption, and the assumptions about rater cutoffs described in the above

paragraph, with equation 1 implies the following data generating process (DGP):

Pr(yctr = k) = Pr(ỹctr > τr,k−1 ∧ ỹctr ≤ τr,k)

= Pr(ectr > τr,k−1 − zct ∧ ectr ≤ τr,k − zct)

= F

(
τr,k − zct

σr

)
− F

(
τr,k−1 − zct

σr

)
= F (γr,k − zctβr)− F (γr,k−1 − zctβr) .

(3)

The last two lines of equation 3 reflect two common parameterizations of this model.

The first parameterization is typically called multi-rater ordinal probit (MROP) (Johnson &

5The majority of raters provide ratings for only one country.

9



Albert 1999, Pemstein, Meserve & Melton 2010),6 while the latter is an ordinal item response

theory (O-IRT) setup (Clinton & Lewis 2007, Treier & Jackman 2008). Note, in particular,

that βr = 1
σr

and γr,k =
τr,k
σr

.7 The parameter σr is a measure of rater r’s reliability when

judging the indicator; specifically it represents the size of r’s typical errors. Raters with

small σr parameters are better, on average, at judging indicator i than are raters with large

σr parameters. In the IRT literature, βr is known as the discrimination parameter,8 while

each γ is a difficulty parameter. The discrimination parameter is a measure of precision; a

rater characterized by an item discrimination parameter close to zero will be largely unre-

sponsive to true indicator values when making judgments while a rater with a discrimination

parameter far from zero will be very “discriminating.” The γ and τ parameters are thresh-

olds that control how raters map their perceptions on the latent interval scale into ordinal

classifications. The term “difficulty parameter” stems from applications in educational test-

ing where the latent variable is ability and observed ratings are binary (in)correct answers

to test questions. The scale identification problem faced by cross-national surveys such as

V-Dem is driven by the fact that these γ and τ parameters may—and perhaps are even likely

to—vary across raters hailing from different cultural and educational backgrounds.

Completing the model specification requires adopting prior distributions for the model

parameters. We will focus on the O-IRT model here. Generally, one sets zct ∼ N (0, 1) a

priori. This assumption (arbitrarily) sets the scale of the estimated latent traits. Second,

one assumes βr ∼ T N (µβr , σβr , 0,∞).9 Finally, while different authors adopt varying priors

for γr,k, it is possible to adopt completely uninformative uniform priors for these parameters,

subject to the constraint that they remain ordered within raters. When one lacks any

6If we assume F (·) is standard normal.
7This equivalency breaks down if we allow for βr parameters less than one. Thus, the O-IRT model is

potentially more general than MROP.
8Equation 3 makes clear that βr measures rater precision.
91 is a common choice for µβr

. One typically chooses a large value for σβr
, thereby adopting a vague

prior. The assumption of truncation at zero equates to assuming that raters agree on which direction is up.
While reasonable in our context, this assumption is inappropriate when one uses IRT models to estimate
ideology from voting behavior. Relaxing this assumption can complicate the bridging problem significantly
because it complicates model identification (Ho & Quinn 2011).
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bridging between sets of raters, such a prior will fail to identify the model. Or, in other

words, under such a prior, the model lacks sufficient information to set the relative placement

of disjoint (with respect to cases rated) sets of rater thresholds, and, in turn, latent trait

estimates. Thus, we adopt vaguely informative priors for the γr,k parameters throughout.

At its heart, this model does three things. First, it takes ordinal observations and maps

raters’ thresholds onto a single interval-valued latent variable. In other words, it provides a

reasoned way to deal with a relatively large class of differences in how individual respondents

interpret Likert scales. Second, it allows raters to vary in how reliably they make judgments,

but largely assumes away the potential for systematic rater biases that are not covered

by varying thresholds.10 This latter point is easiest to see in the MROP version of the

model. Specifically, in a standard MROP, one assumes F (·) is standard normal, such that

ectr = N (0, σ2
r). So, in other words, raters get things right on average, but they make

stochastic mistakes where the typical magnitude of mistakes that rater r makes on indicator

i is σ2
r . So, if σ2

r < σ2
r′ then rater r provides more reliable judgments about z than r′ because

she makes smaller mistakes on average. Finally, taking differences in rater thresholds and

precisions into account, the model produces interval-valued estimates of latent traits—each

zct—accompanied by estimates of measurement error that reflect both the level disagreement

between coders on the case in question, and the estimated precision of the coders who rated

the case.

2 The Bridge Problem

In practice, we face two related problems when attempting to use O-IRT models to generate

cross-nationally comparable estimates of latent traits using the V-Dem data. The general

problem, of course, is that, if we choose not to simply assume that raters share similar

10For instance, the model cannot account for a rater that applies one set of thresholds to one country and
a different set to another. Nor does this model capture the possibility that rater precisions might vary over
space and time, although the model might be expanded to handle such issues.
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thresholds,11 we cannot establish the cross-national comparability of our estimates. And,

because the scale of the model is established by the vague prior on the zct parameters, we

know that, in the absence of any bridging, the scale location of scores within countries

will be set relative to the empirical pattern of codes provided by raters. If country traits

are highly variable and generated randomly from the same distribution, then scales would

tend to converge even without bridging, but real traits do not look remotely like a random,

highly variable, process. Furthermore, whether or not bridging observations establish scale

convergence relies not just on whether or not we have many bridges, but on how bridging

observations correspond to empirical patterns in the data. In other words, some bridges are

more informative than others and certain countries are much harder to align with a common

scale than others. Indeed, our secondary concern is that empirical patterns in regime traits

often exacerbate the fundamental scale equivalence problem.

While it is, in general, difficult, to determine whether two cases are sufficiently bridged to

obtain scale equivalence, sometimes the lack of sufficient bridging is painfully obvious. When

we naively apply O-IRT models to weakly bridged V-dem data, we consistently produce

estimates of latent values for Western-European countries that are lower than for countries

in which experts codings’ on the original Likert scales point to serious democratic deficiencies.

This finding is largely a result of two trends in our data. First, coders of Western, established

democracies exhibit low variation in their coding. An example of this issue is presented in

Figure 1. The top two panels present the yearly average ratings for Denmark on the original

ordinal scale for V-Dem’s barriers to parties indicator. Country experts clearly agree that

there are no barriers to parties in Denmark (higher scores reflect lower barriers), except

during a brief period in the 1940s. Contrast this result with the highly variable yearly

average of this variable for Mali, shown in the top right panel of the figure. The two bottom

panels present the result of fitting an O-IRT model, like that described in section 1, to

around 150 countries worth of ratings containing few cross-national bridges. While the

11And fitting O-IRT models to single-country series provides substantial evidence that rater thresholds
vary, even within countries.
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measurement model results for Mali reflect its transition to a “no barriers” mode (as the zct

estimates cross the upper threshold),12 the measurement model estimates for Denmark never

cross the upper threshold. Thus, even though the country experts agree that the situation

with regards to parties’ barriers is flawless in Denmark, the lack of variation in ratings is

problematic. Clearly, we lack sufficient bridges to place Denmark and Mali on the same

scale. Moreover, a reasonable interpretation of the Danish data is that, because every rater

agrees that Denmark rates very highly on this trait in every time period, we should place

Denmark near the top of the common scale with high confidence. But, once we relax the

assumption that thresholds have consistent meanings across raters, country time-series like

Denmark provide virtually no information about scores, because we have no way to nail

down what Danish thresholds mean relative to one another, or to coders in other countries.

Furthermore, while cases that exhibit sufficient variation to produce estimates that span

their local scales may look comparable on visual inspection, without sufficient bridging it

is impossible to establish the comparability of country time-series, even when they provide

substantial information about coder thresholds within countries.

3 A Simulation-Based Examination of Bridging

3.1 Thresholds Drawn from the Same Distribution

To evaluate the effects of bridging on model fit, cross-national comparability and identi-

fication, we preform a number of Monte Carlo experiments. Our first set of experiments

examines the “Swiss,” or constant-country problem. These experiments, which examine

scale equivalence between two simulated “countries,” proceed as follows:

1. We generate “true” values for each zct, which represent real country-year latent ability

scores. In order to proxy the countries we observe in the V-dem dataset, we focus on

two country ‘types.’ The first is what we call a ‘constant’ country (used as proxies

12Thresholds in these graphs reflect population means for the γr,k parameters.
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Figure 1: Raw ratings and measurement model results for barriers to parties indicator.
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for Western-European countries). To simulate these countries, we draw latent ability

scores zconstantct ∼ N (1.8, .05). In addition, we generate latent ability scores for countries

we dub ‘random.’ These are countries in which coders’ ratings exhibit a high degree

of variation, and thus provide us with a substantial information regarding coders’

thresholds. These scores are drawn from a zrandomct ∼ N (0, 1) distribution.13

2. We also generate |R| ×K coders’ thresholds, γr,k. The first threshold, γr,1, is drawn

from a N (−1.5, 0.2) distribution. Additional three, γr,k=(2,...,4) are drawn sequentially

from normal distributions with means (-5., .5, 1) and standard deviation 0.2. For

each threshold, we truncate the prior from below by the mean of the k − 1 threshold.

Note that, while we allow rater thresholds to vary, the fact that we draw them from

identical distributions will tend to minimize the role that such variation plays in scale

equivalence. Thus, we focus attention on the issue that constant countries pose in

these experiments.

3. To complete the latent data, we generate coders’ discrimination parameters such that

βr ∼ T N (1, 3, 0,∞) distribution.

4. Given the above simulated parameters, we use equation 3 to simulate observed ratings

data.

For our purposes, bridge-coding is defined as a situation where a coder who ‘originally’

codes one country (for example, an expert of British politics, rating only the UK), also pro-

vides ratings for an additional country. As for our stylized, simulated datasets, we generally

begin with ‘baseline’ data, in which we simulate data for two countries, over a period of 100

years. This baseline dataset includes five coders who provide ratings only for one country,

and five who provide ratings for the other. This is a ‘no-bridging’ scenario. In order to

13Throughout the paper we use the term constant country to denote the country whose latent ability scores
were drawn from a N (1.8, .05) distribution, and ‘random country’ to denote a N (0, 1) country. Random
countries are, of course, an ideal type never actually realized in the V-Dem data. Constant countries, on the
other hand, are an ideal type that is lamentably common in nature.
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simulate bridge coding, we choose a number of coders from only one country, and simulate

their ratings for the other. We do this gradually, starting with only one bridge coder, and up

until we have ‘full-bridging.’ This is a situation where all five coders from a given country

also provide ratings for the other.

We begin our evaluation of the effects of bridging on the mean square error (MSE)

between the model’s estimates and the real latent scores. Bridge-coding is simulated for

the entire period (100 years). The results of these simulations are shown in Figures 2 and

3. The figure is divided into sub-regions, capturing the different levels of simulated bridge

coding (e.g., the left sub-region is a ‘no-bridging’ scenario, and in the fourth, there are three

coders from the first country who also rate the second). We replicated each experiment

across ten simulated datasets. The figures demonstrate that bridging, done either from the

constant to the random country or vice versa, results in a rapid improvement in terms of

MSE. Most strikingly, once we simulate one bridge coder, the MSE values for both country

types decrease from approximately 1 to 0.3 (in the constant country), and approximately

0.85 to 0.2 (random). Once we add more bridge coders MSE values are further reduced, and

reach a plateau of approximately 0.15-2 for constant countries and 0.1-0.15 for the random

country with 3-5 bridge coders.

The second criterion we use to evaluate the effects of bridging is the percentage of the

latent ability scores zct which are covered by 95% of the model’s posterior latent scores

estimates (coverage). Examination of the Figures 4-5 reveals that regardless of the direction

of bridging, even one bridge coder (for the entire period) increases the coverage rates to

approximately 90%-100%. 14

Next we turn to direct comparisons between the model’s parameters and the generated

data. We begin by inspecting the zct parameters. By examining this we hope to assess the

degree to which lack of variation in latent scores affects model fit, and the extent to which

14We repeat those simulations with limited bridging periods (with bridge coding covering only ten years
instead of the entire period. The results follow the same pattern, with a smaller magnitude). This implies
that we are likely to benefit far more from recruiting a small number of bridge coders to code full time series
across constant and varying countries than we are from asking many coders to rate limited cross-sections.
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Figure 3: Evaluation of bridging from random to constant countries–mean square error of
latent scores
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Figure 4: Evaluation of bridging from constant to random countries–95% coverage
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Figure 5: Evaluation of bridging from random to constant countries–95% coverage
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bridging helps alleviate potential issues. Before preforming these direct comparisons, we

follow Bafumi et. al (2005) and and rescale the model’s fitted values so that they have the

same mean and standard deviation as the original latent scores. To present these comparisons

systematically, we plot the generated country latent scores against the model’s z parameters

in Figures 6 and 7. The first thing noticeable in Figure 6 is that the estimates for the constant

countries (in red) cluster in two distinct areas. One cluster is located close to the 45 degree

line, and one below it.15 In addition, the results of the baseline model (upper left panel in

both figures) indicate that the model tends to over-predict the latent scores for the random

country. This is a result of the relativity of the latent scales and our decision to mean-center

estimates to aid in comparability; the rotation of the latent traits is arbitrary. Focusing on

Figure 6, we see that the quantity of bridge coding has a strong effect on model fit. Bridging

pulls both the over predicted and the under predicted (constant) values toward the 45 degree

line. Much like in previous diagnostics, this process is gradual. In the simulation in which

all five coders from the constant country also code the random one (lower-right panel), the

estimates for the random county are almost entirely clustered on the 45 degree line (apart

from a number of outliers at the extremes of the distribution). Under this scenario, the

estimates from the constant country are also closer to the 45 degree line.

The results presented in Figure 7 match closely with those observed in Figure 6. However,

closer inspection of our results reveals that when the bridge coding is done from the constant

country to the random one, the fit of the model is improved. As can be seen in Table 1,

the MSE for both random and constant countries are lower for constant-random bridging

than for random-constant bridging. This result makes a lot of sense because, prior to bridge

coding the model knows a lot less about the thresholds of raters in the constant country than

it does about those in the random country. In terms of bridge-rater recruitment strategy, we

see that we stand to obtain greater benefit from asking “Swiss” coders to code cases with

substantial variation than we do from recruiting coders with well-estimated threshold values

15This looks suspiciously like a multiple-modes problem. A similar pattern does not appear when we use
variational approximation to estimate the O-IRT model. Here we use Hamiltonian Monte Carlo.
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Note: The figure shows the effects of bridging from a constant (red) to a random (black) country. The upper left panel presents

the results for the baseline mode (no bridging). Points depict the results of per simulations per regime (no bridging, one bridge

coder, two bridge coders, etc.)

Figure 6: Fitted and real latent score estimates. Bridging is from constant to random
countries
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Note: The figure shows the effects of bridging from a random (black) to a constant (red) country. The upper left panel presents

the results for the baseline mode (no bridging). Points depict the results of per simulations per regime (no bridging, one bridge

coder, two bridge coders, etc.)

Figure 7: Fitted and real latent score estimates. Bridging is from random to constant
countries
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Table 1: Sums of Mean Square Error
constant country random country

c-r bridging
1.13 0.60

(0.01) (0.009)

r-c bridging
1.60 0.97

(0.009) (0.01)

Note: Sums of mean square errors for model including full bridging pattern (bottom-right panels of Figures

6 and 7) . c-r bridging implies that coders from constant countries also code random the country. r-c stands

for the opposite pattern.

to code constant cases.

We now turn to inspecting model fit with regards to the coders’ thresholds parameters

γj,k. As in the previous examples, we compare patterns and quantity of bridging, how these

affect the model’s predictions, and their relationship with the latent generated data. Figures

8 and 9 summarize these experiments. As always, the no-bridging scenarios yields estimates

that are biased. Specifically, the threshold parameters of coders who only rate the random

country are over-predicted, while those of coders who only code the constant country are

under-predicted. As can be seen in Figure 8, increasing the degree of bridging from the

constant to the random country reduces the bias, as more and more of the points fall closer

to the 45 degree line. In addition, it is clear that even without a large degree of bridging,

the lower thresholds of the constant coders are estimated with minimal bias.16 Overall, even

with full bridging (i.e. when all coders from the constant country also code the random

country), there is still bias in the estimates of coders’ thresholds. Examination of figure 9

highlights the extent of this issue. The figure shows that when the bridging pattern is from

the random to the constant country, bridging has little effect on the bias with which these

parameters are estimated. This problem is especially acute when it comes to estimating

constant country coders’ thresholds .

16We simulate the constant country such that coders almost give it a perfect, high score. This minimal
information is sufficient to estimate the location of the lowest threshold with little bias, but not of other
thresholds.
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Figure 8: Fitted and real thresholds’ estimates. Bridging is from constant to random coun-
tries.

In addition, the lower thresholds of the coders who are originally from the constant

country (depicted at the upper panels of Figure 8 in blue dots and in the bottom panels in

red, as we simulate more and more bridge coding), are estimated with minimal bias when

we simulate full bridging17

3.2 Thresholds Drawn from Different Distributions

We now turn our attention to situations where latent traits exhibit substantial variation

within countries but coders across countries have significantly different thresholds. To simu-

late the situation where coders from different countries have different thresholds, we generate

the coders’ thresholds drawn from different distributions. For the “low threshold” coders,

the means of their k thresholds, γlowµ,k , are drawn from a N (−1, .5) distribution. These coders

17That is, a situation where all countries from country A also code country B.
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Figure 9: Fitted and real thresholds’ estimates. Bridging is from random to constant coun-
tries.
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are able to discriminate between lower-valued latent scores, but lump high latent values into

their top ordinal category. For the “high threshold” coders, the means of their k thresholds,

γhighµ,k , are drawn from a N (1, .5) distribution, subject to the ordering constraint. These

coders are less able to discriminate low latent traits. This simulates a country where coders

consistently tend to be more harsh on their evaluations of the country’s level of political

development. These two sets of coders rate two “random” countries, for which the latent

scores are both drawn from a N (0, 1) distribution. The parameters of coders’ discrimination

are generated from the same distribution as in the previous simulation.

In the baseline (unbridged) model, five “low threshold” coders rate only one country,

while the five “high threshold” coders code the other country. Then we evaluate the effects

of bridge-coding by simulating either “low threshold” or “high threshold” coders’ ratings

for the other country for the entire period. The MSE of these simulations are shown in

Figure 10 and 11. Figure 10 and 11 demonstrate the effects of bridging coding done by

“high threshold” and “low threshold” coders, respectively, on the MSE. The Figures suggest

that bridging, either done by the “high threshold” or “low threshold” coders, brings a rapid

improvement for the “bridged country.” However, the improvement for bridge coders’ original

country is not substantial. For example, when a “low threshold” coder does bridging coding

for the other country, it provides information about where thresholds of those “high” coders

are. In addition, the “high” coders’ are less able to distinguish between latent traits below

their lowest threshold, and the bridging coding helps solve this issue. Similarly, the “low”

coders cannot distinguish between latent traits above their highest threshold, but since none

of the “high” coders does bridging coding for the “low” coders’ country, those high latent

traits are still not accurately estimated.

Figures 12 and 13 more clearly illustrate the effects of bridging coding on the country-

year estimates. The Figures show that in the baseline experiment, country-years coded by

the “low” coders (black dots) tend to be overestimated; while country-years coded by the

“high” coders (red dots) are likely to be underestimated. In addition, the high latent traits
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Figure 10: Evaluation of bridging from a country with low coders’ thresholds to a country
with high coders’ thresholds, mean square error of latent scores.
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Figure 11: Evaluation of bridging from a country with high coders’ thresholds to a country
with low coders’ thresholds, mean square error of latent scores.
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Figure 12: Fitted and real latent score estimates. Bridging is from a random country with
low coders’ thresholds to a random country with high coders’ thresholds. Countries coded
by low threshold coders are represented by black dots. Countries coded by high threshold
coders are represented by red dots.

in the “low” coders’ country are in general poorly estimated, and vice versa. The estimates

for both countries move toward the 45-degree line. However, for the bridging countries, the

high latent traits in the “low” coders’ country and the low latent traits in the “high” coders’

country are still poorly estimated.

In sum, these experiments imply that, when coders in different countries have significantly

different standards—when one set of coders is more strict than the other—we require bridges

in both directions to obtain scale equivalence. It also demonstrates that the information

provided by limited bridging does not filter through γr,k and zct estimates as rapidly as one

might intuitively expect.
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Figure 13: Fitted and real latent score estimates. Bridging is from a random country with
high coders’ thresholds to a random country with low coders’ thresholds. Countries coded
by low threshold coders are represented by black dots. Countries coded by high threshold
coders are represented by red dots.
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4 Efficiently Selecting Bridges

The simulations in section 3 illustrate general patterns in bridge rating efficacy. Ideally, we

would ask a significant number of country-coders to provide bridge ratings for long time

periods in a second country. But, in projects like V-Dem, where coding demands significant

investment from experts, we would like to use patterns in the ratings that we do have to

identify potential bridges that are likely to give us the most bang for the buck. Our approach

to this problem is motivated by the literature on computerized adaptive testing (CAT).18

In the testing context, CAT techniques seek to present questions to a student in an order

that identifies that student’s latent ability on a particular dimension as quickly as possible.

This shortens test time—or survey length—conserving resources. Here, students are anal-

ogous to country-years and questions take the place of raters. One generally assumes that

question (rater) parameters—each γr,k and βr—are known and iteratively chooses questions,

based on their estimated parameters that minimize the expected posterior variance in the es-

timate of the student’s latent ability. First, CAT algorithms prioritize highly discriminating

questions. Then questions are selected based on the relationship between item thresholds

and the current estimate of the student’s latent ability. Intuitively, this generally involves

presenting a student with a moderately difficult question to begin with, presenting a harder

(easier) question if the student does well (poorly) on the first question, and repeating the

process until the estimate of the student’s latent ability reaches some desired level of preci-

sion. A common strategy for item selection uses the MEPV (minimum expected posterior

variance) criterion. Specifically, for a single student with latent trait, z, at each step in the

process, the algorithm chooses the question, q, that meets the condition

argmin
q

[
K∑
k∈1

pq(y
i+1
q = k|yi)Var(z|yi, yi+1

q = k)

]
: q ∈ Qi (4)

18See Montgomery & Cutler (2013) for an introduction to this literature aimed at survey researchers in
political science. Choi & Swartz (2009) provide an overview of CAT item selection methods for ordinal items.
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where pq(y
i+1
q = k|yi) is the posterior predicted probability, prior to answering question q,

that the student’s answer to question q achieves a score of k, Var(z|yi, yi+1
q = k) is the

posterior variance of the student’s latent ability, conditional on her previous performance

and achieving a score of k on question q, and Qi is the set of remaining potential questions

at the ith step of the process (Choi & Swartz 2009).

4.1 Computerized Adaptive Bridging

Our problem differs from the traditional CAT setting in a number of ways. Most importantly,

we cannot assume that our current parameter estimates are valid. Our primary goal here

is not to reduce uncertainty, but rather to find and eliminate bias. If latent trait estimates

are biased at step i, then a bridging strategy based on MEPV has the potential to erro-

neously increase our certainty in both biased threshold estimates and biased latent traits. A

bridge-selection strategy based on MEPV chooses bridges that are most likely to reinforce

existing model estimates. Nonetheless, the logic of CAT suggests a strategy for efficient bias

detection and correction. When a bridging problem exists, good bridges will substantially

alter parameter estimates, particularly zct and γr,k values. This is because good bridges are

cases in which a bridge rater behaves in a way that is highly inconsistent with the model’s

expectations. In a sense, we are looking for bridges that have the potential to surprise us,

given the current model.

We consider two greedy algorithms19 that work by iteratively seeking “surprising” bridges.

The MAM, or maximum average MSE, algorithm selects bridges at each iteration that have

the highest potential to alter estimates, according to the existing model. Formally, at each

19A greedy algorithm attempts to find a globally optimal solution to a given problem by iteratively making
locally optimal choices. In this context, this means choosing individual bridges that maximize (or minimize)
some criterion at each step. In other words, these algorithms do not look multiple steps ahead. We focus
on greedy algorithms here, both because of their computational tractability, and because they match the
process of iterative bridge recruitment that V-Dem must follow in practice.
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step in the algorithm, MAM selects the bridge that meets the condition

argmax
{c,t,r}

[
1

K

K∑
k=1

(
1

|C| × |T |
∑

c,t∈C×T

[
E(zct|yi, yi+1

ctr = k)− E(zct|yi)
]2)]

: {c, t, r} ∈ Bi (5)

where Bi is the set of potential remaining bridges at step i. This approach iterates over

potential bridges and chooses the bridge that maximizes the mean square error between

current and potential estimates, averaged across potential bridge rater responses.

Another approach to selecting potentially surprising bridges focuses on the posterior

predictive distribution. The MALPD—or maximum average local probability difference—

algorithm iteratively chooses bridges that have the highest potential for local positive change

in posterior predicted probability, on average. In particular, at each step, MALPD selects

the bridge that meets the condition

argmax
{c,t,r}

(
1

K

K∑
k=1

[
pctr(yctr

i+1 = k|θi+1)− pctr(yctri+1 = k|θi)
])

: {c, t, r} ∈ Bi (6)

where θi is the vector of fitted model parameters given yi and pctr(·) is the posterior predictive

distribution for case {c, t, r}. Intuitively, this algorithm looks for bridges that have the

potential to elicit ratings that make a lot more sense after the fact than they do before they

are observed. This is a potentially fruitful approach because, absent bridging, the model

may imply that certain potential ratings are very unlikely, but, after observing such a rating,

may judge it quite unremarkable. For example, consider a potential bridge which involves a

coder from a high-threshold country rating a case that coders in a low-threshold country have

routinely judged to be at the top of the scale. Absent bridging, the model would reasonably

predict that the high-threshold coder would also rate that observation highly. But a low

rating by the bridge coder should encourage a large shift in coder threshold estimates, and

this previously unlikely rating would look quite reasonable in the context of the re-calibrated

model.

In principle, we should be able to run either of these algorithms until the observed
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MSE between parameters from the pre- and post-bridge model fits falls below a desired

threshold. Moreover, we can easily adapt these algorithms for constrained search, by altering

the contents of Bi. For instance, while an expert on parliamentary politics in Ecuador might,

in principle, provide a very informative bridge were she to rate legislative corruption in

Bangladesh in 1964, we are unlikely to find an Ecuadorian specialist with detailed knowledge

of Bangladeshi politics in the middle of the last century. Similarly, it is unlikely to be practical

to recruit bridges one at a time in most cross-national expert survey projects. Thus, rather

than attempting to recruit only the single bridge that maximizes equations 5 or 6, we could

use this approach to identify the set of n most potentially informative bridges, from a set of

plausible potential bridges, at each step.

The proposed algorithms for efficient bridge search are very computationally expensive

because they require us to generate posterior estimates for the model parameters for each

potential outcome of each potential bridging rating at each step of the search. These compu-

tational needs quickly become prohibitively expensive when we use MCMC techniques—even

ones that generally converge quickly, like Hamiltonian Monte Carlo (HMC)—to estimate

model parameters. Standard CAT applications only require the estimation of a single pa-

rameter, making numerical integration a practical approach (Montgomery & Cutler 2013);

here we need to estimate full multi-parameter models, and solve high-dimensional integrals,

making this solution a non-starter. Therefore, we use a variational approximation algorithm

to estimate model parameters at each step (Jordan, Ghahramani, Jaakkola & Saul 1999).20

Appendix A provides details.
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Figure 14: Comparing CAT-Inspired Bridge Selection Algorithm.
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4.2 Evaluating the MAM and MALPD Algorithms

Figure 14 depicts the results of a monte carlo experiment that compares the performance of

the MAM and MALPD algorithms to random bridge selection and a best-possible greedy

algorithm. We simulated 20 two-country datasets using the same procedure we described

when examining the constant coder problem in section 3.1. Then we simulated three search

process. Each process sequentially added 100 bridges to the unbridged dataset. After each

bridge was added, we calculated the mean square error between the “true” distribution of

latent traits and the estimates provided by the O-IRT model. In the first search process,

we chose bridges at random. In the second, we used the MAM algorithm to sequentially

select bridges that had the maximum average potential to alter latent trait estimates. The

third process used the MALPD algorithm to iteratively add bridges to the dataset. Finally,

best-possible algorithm always chose the bridge that minimized the MSE between true and

estimated latent traits, at each bridging step.

The top panel in figure 14 plots the iterative median (across the 20 monte carlo simu-

lations) proportional distances from fully bridged mean square error, with respect to true

latent country-year values, for the three bridge selection algorithms.21 The bottom panel in

figure 14 shows the proportion of monte carlo simulations where the MALPD algorithm pro-

duced a lower MSE, at each bridging step, than random selection. Of the three algorithms

tested, MALPD shows the most promise. The median MALPD MSE is halved within 17

bridges, something that random selection does not do until the 28th bridge, and which the

MAM approach requires 31 steps to achieve. MALPD achieves a median 70 per cent reduc-

tion in proportional MSE at 35 bridges, compared with 72 for random bridging. The MAM

20Variational approximation techniques were developed by computer scientists and their descriptions of
these methods tend to use jargon that is unfamiliar to social scientists. Ormerod & Wand (2010) provide an
overview of these methods, aimed at statisticians, using language that should be familiar to social scientists
with statistical training. Grimmer (2010) provides an introduction using examples drawn from political
science.

21We use this measure to standardize improvement across simulated datasets with varying initial and fully
bridged MSEs. So, for simulation s, at bridging step i, we calculate ds,i = (MSEs,i −MSEs,full)/(MSEs,0 −
MSEs,full). Then, for each i, we calculate median(ds).
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algorithm does not achieve this target even after adding 100 bridges. The typical MALPD

process also outperforms both alternatives until around 90 bridges have been added. By this

point, MALPD and random bridging produce essentially indistinguishable results, and both

have eliminated about 75 per cent of the MSE difference with full bridging, while MAM

trails behind by about 10 percentage points.

Nonetheless, while MALPD outperforms both MAM and random guessing, the improve-

ments it shows are somewhat modest. In particular, it substantially under-performs the best

possible greedy algorithm, which obtains a 90 per cent reduction in MSE after roughly 20

bridges. Of course, the best greedy algorithm achieves an ideal that may be out of reach for

algorithms that must rely on observables. We are, nonetheless, currently studying the best

greedy algorithm in order to determine how to best approximate its behavior using observable

information. We are also developing a series of other potential bridging algorithms—both

greedy algorithms that maximize other objective functions and more advanced algorithms

that use standard search-tree pruning techniques to look down the bridging tree efficiently

(see e.g. Russell & Norvig 1995, ch. 4, 5). Finally, we are expanding our simulation stud-

ies to consider other common bridging problems, including the low/high threshold problem

discussed above.

While developing tools for efficient bridge selection is useful, in and of itself, we also hope

to use these tools to develop methods for evaluating the extent to which bridging problems

threaten inferences from extant datasets. Logically, the ability to identify critical bridges

should provide a way to quantify the potential for bridging failures in fitted IRT models.

When potentially critical bridges exist, a fitted model runs a high risk of scale identification

problems; when few such bridges are available then we can be confident that no scaling issues

exist. Thus, as we improve our algorithms for efficient bridge selection, we are concurrently

examining their potential as diagnostic tools.
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5 Conclusion

This paper provides perhaps the first systematic analysis of bridging in the context of item

response models for cross-national expert surveys. We believe this to be an issue that is

applicable to a large number of studies, which build upon the ability of country experts

to provide detailed information about latent political concepts. While country experts’

knowledge is a rich source of data, using this source brings about serious challenges in

terms of cross-rater comparability, which, thus far, have not been thoroughly addressed in

the literature. Furthermore, while the question has been more extensively examined in the

context of measuring ideological common spaces, we lack general tools for effectively assessing

bridging quality in latent variable models. Thus, exploring how patterns of bridging affect

scale comparability in the sorts of models we examine here has implications for a wide array

of work in the discipline.

Of course, our current study is motivated by the data collected as part of the Varieties

of Democracies project. Therefore, we have focused on patterns of bridging failure that are

relevant to V-Dem. We address the issue of bridging low-variance, ‘constant’ countries, by

performing a number of Monte Carlo simulations in which we gradually increase the degree

of bridging to, and from, these countries. Our results demonstrate that bridging has a large

impact on the model’s parameters. First, the results indicate that bridging brings about

a rapid decrease in the mean square error of the latent ability scores, and an increase in

credible interval coverage. In our simulated data, even one bridge coder (a coder who rates

both countries for the entire 100 year period), brings about a reduction of about 70% in

MSE, and a 30%-50% increase in coverage rates. However, it is important to note that the

pattern of bridging has consequences. The results show that recruiting a limited number of

bridge coders who rate a large period in the bridged country is a much better way of reducing

bias than obtaining a large number of coders who only rate a small number of years.

In conjunction with examining MSE and coverage, a direct comparison of the model’s

estimated parameters with the data we generated yields an additional important finding.
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Specifically, when it comes to estimating countries’ latent ability scores (zct), bridging from

a constant country to a country with substantive variation provides a larger reduction in

model bias. When we inspect the effects of bridge coding on estimation of thresholds (γj,k

parameters), it becomes evident that a constant-random bridging pattern is a much better

way of reducing bias and identifying coders’ thresholds than a random-constant bridging

pattern.

Next, we tackle the issue of cross-rater thresholds’ comparability. We know that in may

cases, raters vary greatly in their thresholds. Some coders might be described as lenient,

i.e., they have very low thresholds for democratic indicators, while others may be tough, and

tend to high higher standards in terms of their rating. We address this issue by drawing

thresholds from two distributions with different means. Simulating bridging for the two types

of coders shows that bridging brings about an improvement in terms of MSE and of coverage,

but that this improvement is limited. Specifically, we gain improvement in estimating zct

parameters from the country from which we simulate the bridging, but not for the target

country. Overall, our experiments show how serious the varying threshold problem can be,

and that a very large amount of bridging (possibly from both directions) is necessary in

order to overcome bias that results from this issue.

Finally, we propose and evaluate and algorithm for efficiently choosing bridge raters and

demonstrate some promising results. Overall, the paper clearly shows that bridging (or lack

thereof) matters. Ignoring this issues leads to misleading inferences, both in terms of latent

ability estimates, and in terms of thresholds (difficulty) parameters. Moreover, achieving

cross-rater comparability is a complicated task. Our analysis demonstrates that a large

degree of bridging is necessary to bring about an improvement in biases that result from

low variation in coders’ rating, and from their varying conception of gradation in the latent

concept that is being measured.
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A Variational Approximation for O-IRT

Variational approximation algorithms allow one to approximately estimate an intractable

density function, p(θ|y), by iteratively approximating the target density in terms of a more

tractable density, q(θ), in a way that minimizes the Kullback-Leiber divergence between

q and p(·|y). In a common approach, known as a mean field approximation, one selects

an approximating density q from a parametric family such that, for some parameter parti-

tion {θ1, . . . ,θM}, q(θ) factorizes into
∏M

i=1 qi(θi) (Ormerod & Wand 2010). Interestingly,

Ormerod & Wand (2010) show that mean field approximation and Gibbs sampling are closely

related. In particular, they show that the optimal sub-densities q1, . . . , qM for minimizing

the Kullback-Leiber divergence between q and p are

q∗i (θi) ∝ exp [E¬θi log p(θi|θ¬i,y)] . (7)

In other words, these optimal approximating distributions are functions of the full conditional

distributions of the parameters of p. Thus, it is generally straightforward to adapt any Gibbs

sampling algorithm, which simulates from p by iteratively drawing from the full conditional

distributions of p, into a mean field approximation algorithm. This is helpful in this context

because researchers have extensively developed Gibbs sampling algorithms for IRT models

(see e.g. Johnson & Albert 1999).

A.1 A Mean Field Approximation Algorithm for the O-IRT Model

We develop a mean approximation algorithm for the O-IRT model described by equation 3,

subject to the following priors:

zct ∼ N (0, 1), βr ∼ N (µβ, σ
2
β), and γr,k ∼ U(−2, 2) s.t γr,1 ≤ · · · ≤ γr,K−1.
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In particular, we construct an approximating distribution, q, such that

q(θ) = qỹctr(ỹctr)qzct(zct)qβr(βr)qγr,k(γr,k)

where θ is the full vector of model parameters, and the optimal approximating partitioned

distributions are

q∗ỹctr(ỹctr) ∝ exp [E¬ỹctr log p(ỹctr|θ¬yctr , yctr)]

∼ T N (E(zct)E(βr), 1, E(γr,yctr−1), E(γr,yctr)) ,

q∗zct(zct) ∝ exp [E¬zct log p(zct|θ¬zct ,yct)]

∼ N


∑
r∈Rct

E(βr)E(ỹctr)

1 +
∑
r∈Rct

E(βr
2)

,
1

1 +
∑
r∈Rct

E(βr
2)

 ,

q∗βr(βr) ∝ exp [E¬βr log p(βr|θ¬βr ,yr)]

∼ N


∑
c,t∈Jr

E(zct)E(ỹctr) +
µβ
σ2
β

1
σ2
β

+
∑
c,t∈Jr

E(zct2)
,

1
1
σ2
β

+
∑
c,t∈Jr

E(zct2)

 ,

q∗γr,k(γr,k) ∝ exp
[
E¬γr,k log p(γr,k|θ¬γr,k ,yr)

]
∼ U

(
max

[
−2, max

yctr=k
E(ỹctr)

]
,min

[
min

yctr=k+1
E(ỹctr), 2

])
.

(8)

The expectations in the approximating distributions are

E(ỹctr) = µctr +
φ(E(γr,yctr−1)− µctr)− φ(E(γr,yctr)− µctr)
Φ(E(γr,yctr)− µctr)− Φ(E(γr,yctr−1)− µctr)

E(zct) =

∑
r∈Rct

E(βr)E(ỹctr)

1 +
∑
r∈Rct

E(βr
2)

E(βr) =

∑
c,t∈Jr

E(zct)E(ỹctr) +
µβ
σ2
β

1
σ2
β

+
∑
c,t∈Jr

E(zct2)

E(γr,k) =
1

2

(
max

[
−2, max

yctr=k
E(ỹctr)

]
+ min

[
min

yctr=k+1
E(ỹctr), 2

])
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where µctr = E(zct)E(βr). Note that the notation E(x) is shorthand for the expected value

of x with respect to the approximating distribution qx(x). One confusing aspect of these

equations is that they appear to be infinitely recursive. So, for example, E(ỹctr) is a function

of E(zct) which is a function of E(yctr). But, at any point in the algorithm, the current

estimate of each qx(x) distribution is fixed and we have an approximation to E(x) for each

x that can be plugged directly into whatever distribution function we are updating our

estimate at the given step.

The algorithm works by iteratively approximating the values E(yctr), E(zct), E(βr), and

E(γr,k) across c, t, r, and k. Upon convergence, which we evaluate by monitoring change in

the lower bound on the marginal likelihood

p(y, q) ≡ exp

∫
q(θ) log

[
p(y,θ)

q(θ)

]
dθ,

we can calculate approximate point estimates and credible intervals for parameters of interest

by plugging our final estimates of these expectations into the approximating conditionals

described in equation 8.
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